4.4. Показники варіації
Після встановлення середньої величини (х,М0,Ме) виникає питання, в якій мірі індивідуальні значення ознаки відрізняються між собою та від середньої. Для цього розраховують показники варіації.
Варіацією ознаки називають різницю у числових значеннях ознак одиниць сукупності та їх коливання навколо середньої величини, що характеризує сукупність. Чим менша варіація, тим одноріднішою є сукупність і більш надійною (типовою) є середня величина.
До основних абсолютних і відносних показників, що характеризують варіацію, є такі: розмах варіації; середнє лінійне відхилення; дисперсія; середнє квадратичне відхилення; коефіцієнт варіації тощо.
Розмах варіації - це різниця між найбільшим та найменшим значеннями ознаки:
R = xmax - xmin
Величина показника залежить тільки від крайніх значень ознаки і не враховує всіх значень, що містяться між ними.
Досконалішим є визначення варіації через інші показники, які дають змогу усунути недолік розмаху варіації.
Середнє лінійне відхилення являє собою арифметичну з абсолютних значень усіх відхилень індивідуальних значень ознаки від середньої:
a) просте: l = ∑│x - xсер│/ n
б) зважене: l = ∑│x - xсер│f / ∑f
Наявність абсолютних значень відхилень від середньої пояснюється так: середня арифметична має нульову властивість, згідно якої сума відхилень індивідуальних значень ознаки зі своїми знаками дорівнює нулю; щоб мати суму всіх відхилень, відмінних від нуля, кожне з них слід брати за абсолютною величиною.
Основним недоліком середнього лінійного відхилення є те, що в ньому не враховуються знаки відхилень, тобто їх спрямованість. Тому цей показник варіації використовується рідко (аналіз складу працюючих, ритмічність виробництва, обертання коштів у зовнішній торгівлі тощо). Прагнення мати показник варіації, який би усунув недоліки середнього лінійного відхилення, є дисперсія та лінійне квадратичне відхилення.
Дисперсією називають середню арифметичну квадратів відхилень індивідуальних значень ознаки. В залежності від вихідних даних дисперсія може обчислюватись за формулами середньої арифметичної простої або зваженої:
а) проста: σ2 = ∑(x - xсер) / n
б) зважена: σ2 = ∑(x - xсер) f / ∑f
Дисперсія - це один з найбільш розповсюджених в економічній практиці узагальнюючих показників розміру варіації у сукупності. Дисперсію використовують не лише для оцінки варіації, а й для вимірювання зв'язків між досліджувальними факторами; розклад дисперсії на складові дозволяє оцінити вплив різних факторів, які обумовлюють варіацію ознаки.
Середнє квадратичне відхилення, як і дисперсія, виступає в якості широко використовуємого узагальнюючого показника варіації. Його обчислюють, здобувши квадратичний корінь з дисперсії:
а) просте: σ = √σ2 = ∑(x - xсер) / n
б) зважене: σ = √σ2 = ∑(x - xсер) f / ∑f
Смислове значення середнього квадратичного відхилення таке саме, як і лінійного відхилення: воно показує, на скільки в середньому відхиляються індивідуальні значення ознаки від їх середнього значення. Перевага цього показника порівняно із середнім лінійним відхиленням полягає у відсутності умовного припущення з сумування відхилень без врахування їх знаків, бо відхилення використовуються у квадратній степені. Крім зазначеного, перевагою даного показника у зрівнянні з дисперсією є те, що середнє квадратичне відхилення виражається в тих же одиницях вимірювання, що і значення досліджувальної ознаки (грн, кг, га тощо). Тому цей показник називають також стандартним відхиленням.
В статистичній практиці часто виникає необхідність порівняння варіацій різних ознак. Наприклад, великий інтерес має порівняння віку робочих з їх кваліфікацією, стажу роботи з розміром заробітної плати, собівартістю та прибутку і т.і. При таких порівняннях розглянуті показники коливання ознак з різними одиницями вимірювання не можуть бути використані (наприклад, неможливо порівнювати коливання стажу роботи в роках з варіацією заробітної плати в гривнях).
Для здійснення такого роду порівнянь, а також при зіставленні ознаки у декількох сукупностях з різними середніми арифметичними використовують відносний показник варіації – коефіцієнт варіації.
Коефіцієнтом варіації називають процентне відношення середнього квадратичного відхилення до середньої арифметичної величини ознаки:
V σ = σ / xсер * 100%
Чим більший коефіцієнт варіації, тим менш однорідна сукупність і тим менш типова середня для даної сукупності. Встановлено, що сукупність кількісно однорідна, якщо коефіцієнт варіації не перевищує 33%.